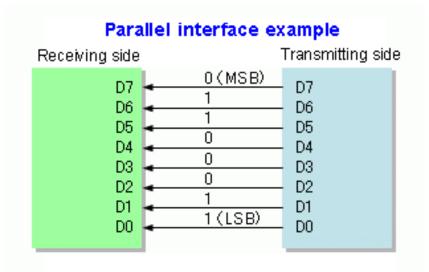
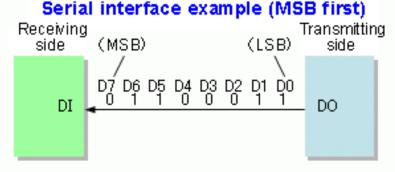
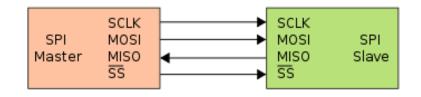

Overview of Serial Bus Protocols

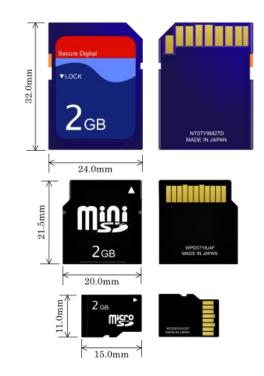

Frank Walsh


We're focussing around here...

Serial Bus

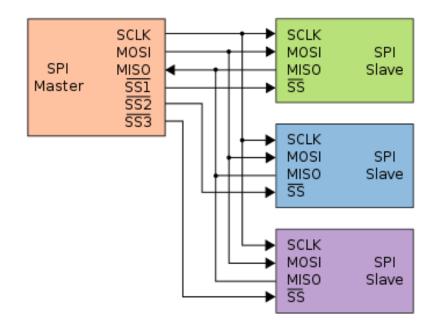
- A communication system that transfers data between components inside a computer or between computers
- Generally 2 types
 - Parallel
 - Serial
- Parallel is simplest to implement but takes up a lot of hardware 'real estate'
- Serial requires fewer lines to transmit data but this adds complexity.
 - Synchronous uses clock
 - Asynchronous no clock but speed (baud rate) agreed before transmission.

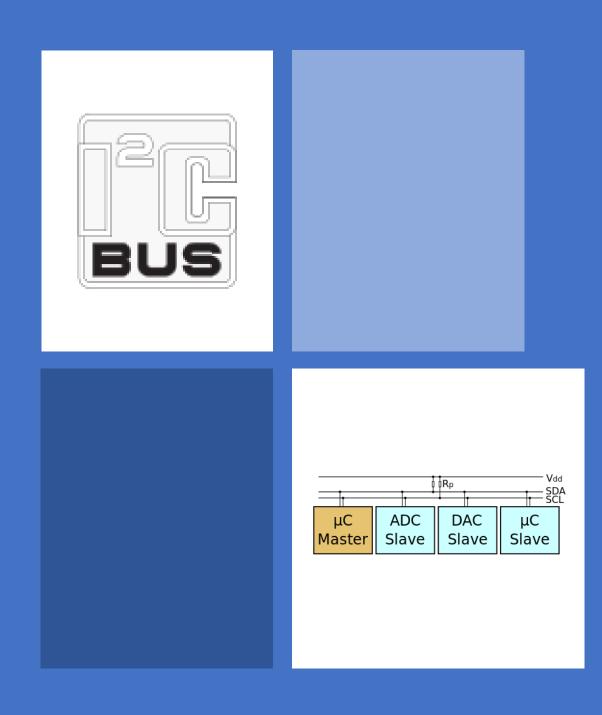



Asynchronous Serial (RS232)

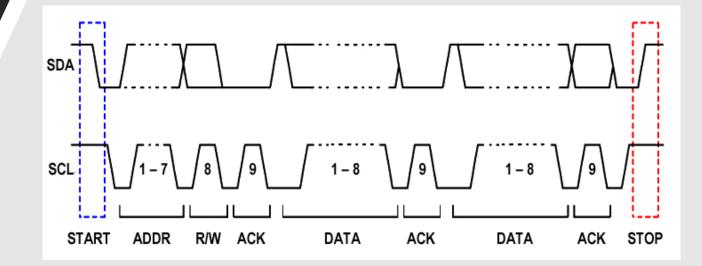
- Used for 1-to-1 communication
- Many variants, simplest just uses 2 lines.
- Often used for console access to configure Network Routers

Serial Peripheral Interface (SPI)


- Master and Slave Devices
 - One master and multiple slaves
- Used in liquid crystal displays and SD Cards
- Master set the speed
- Signals
 - SCLK: Serial Clock (output from master).
 - MOSI: Master Output Slave Input, or Master Out Slave In (data output from master).
 - MISO: Master Input Slave Output, or Master In Slave Out (data output from slave).
 - SS: Slave Select (pulling line low selects slave, output from master).


Serial Peripheral Interface (SPI)

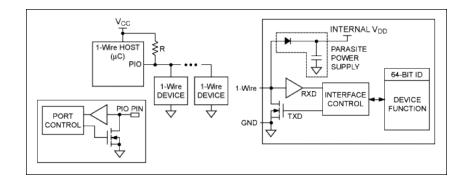
- Slave select line goes low to select slave
- Full duplex data transmission occurs.
 - The master sends a bit on the MOSI line and the slave reads it
 - The slave sends a bit on the MISO line and the master reads it.

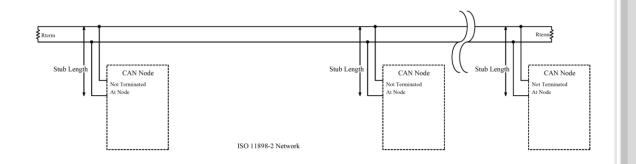

I²C (Inter-Integrated Circuit)

- Also referred to as 2-wire bus.
 - Clock(SCL) and Data(SDL)
- Used for connecting lower-speed devices to processors and microcontrollers
- Master-slave approach.
- Unlike SPI, uses addressing instead of physical Slave Select lines (hence only 2 wires).
- Speeds: 100kbs, 400kbs, 1Mbs and 3.4Mbs

I²C (Inter-Integrated Circuit)

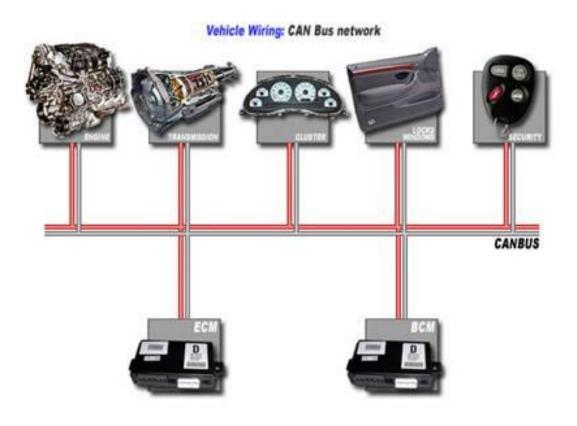
- 1. SDA,SLC start high
- 2. Master: SDA to low to signal start
- 3. Master: Send SCL with 7 bit address followed by 0 (for write)
- 4. Slave: pulls SDA to low for Acknowledgement
- 5. Master: sends **8** bit data on SDA
- 6. Slave: Acknowledgement
- 7. All: allow SDA, whin SCL is high to Stop


I²C (Inter-Integrated Circuit)


• You can transfer multiple bytes consecutively

	S Slave Address 🕅 🗛	DATA	A	DATA	A P	A = Acknowledge
From Master to Slave	Master Transmitter writing to Slave Receiver				Ā = Not Acknowledge S = Start	
From Slave to Master						P = Stop
	S Slave Address R A	DATA	A	DATA	Ā P	R = Read
	W = Write					

1-Wire


- provides low-speed data, signaling, and power over a single wire.
- Similar to I²C, but lower data rates and longer range.
- Despite the name, you need **2** wires:
 - Data and ground.
- Because there's no power(Vcc line), 1-Wire devices use capacitors to store power
 - Parasitic device takes power from bus.
 - power the device when the data line is active

CAN (Controller Area Network)

- A Controller Area Network (**CAN bus**) allows microcontrollers and devices to communicate with each other.
- Predominantly used in Automotive
 - Also in aviation/industrial
- No Master-Slave, it's mutli-master
 - Any node can initiate comms.
- All nodes are connected to each other through a two wire bus

CAN (Controller Area Network)

- CAN reduces wiring requirements
- Robust protocol with built in fault tolerance
- Reliable
 - That's why it's the defacto protocol in automotive
- Relatively straight forward protocol to understand....

Universal Serial Bus (USB)

- USB resulted from mixture of connection methods used on PCs
 - Serial ports (modems)
 - Parallel ports (printers)
 - PCI (keyboards and Mice)
- Now it's "defacto"
- Low speed
 - Mice, keyboards
- Full speed
 - Other devices
- High speed
 - USB 2.0, media devices
- USB **3.0...**
- Used for all sorts of stuff!!!

USB 1.0	January 1996	Low Speed (1.5 Mbit/s)
USB 1.1	August 1998	Full Speed (12 Mbit/s) ^[24]
USB 2.0	April 2000	High Speed (480 Mbit/s)
USB 3.0	November 2008	SuperSpeed (5 Gbit/s)
USB 3.1	July 2013	SuperSpeed+ (10 Gbit/s)
USB 3.2	?-September 2017	SuperSpeed++ (20 Gbit/s)